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ABSTRACT 
Performance analysis of communication activity for a terascale 
application with traditional message tracing can be overwhelming 
in terms of overhead, perturbation, and storage. We propose a 
novel alternative that enables dynamic statistical profiling of an 
application’s communication activity using message sampling. 
We have implemented an operational prototype, named PHOTON, 
and our evidence shows that this new approach can provide an 
accurate, low-overhead, tractable alternative for performance 
analysis of communication activity. PHOTON consists of two 
components: a Message Passing Interface (MPI) profiling layer 
that implements sampling and analysis, and a modified MPI 
runtime that appends a small but necessary amount of information 
to individual messages. More importantly, this alternative enables 
an assortment of runtime analysis techniques so that, in contrast to 
post-mortem, trace-based techniques, the raw performance data 
can be jettisoned immediately after analysis. Our investigation 
shows that message sampling can reduce overhead to 
imperceptible levels for many applications. Experiments on 
several applications demonstrate the viability of this approach. 
For example, with one application, our technique reduced the 
analysis overhead from 154% for traditional tracing to 6% for 
statistical profiling. We also evaluate different sampling 
techniques in this framework. The coverage of the sample space 
provided by purely random sampling is superior to counter- and 
timer-based sampling. Also, PHOTON’s design reveals that frugal 
modifications to the MPI runtime system could facilitate such 
techniques on production computing systems, and it suggests that 
this sampling technique could execute continuously for long-
running applications.  

1 INTRODUCTION 
To fully realize the potential of terascale computing, users 

must be able to understand the performance of their applications. 
Unfortunately, the scale of new systems, which will have 
thousands, if not millions, of processors [1], is quickly 
outstripping the capabilities of traditional performance analysis 
techniques. While traditional trace-based techniques for analyzing 
communication performance of distributed applications have 
demonstrated advantages [6, 8, 12-14, 17, 18, 20, 21, 24, 26], their 
operation on terascale platforms presents several challenges. In 
particular, these techniques require post-mortem analysis of 

potentially massive tracefiles, which, in turn, can lead to high 
instrumentation overhead and flawed performance observations. 

Put simply, this paper proposes a novel alternative that 
addresses these challenges by enabling statistical profiling for 
individual messages of an application’s communication activity 
during execution. Similar to other statistical profiling techniques 
[2, 3, 9], our technique strikes a balance between the 
comprehensive detail of tracing and the insight necessary for 
optimization. Our alternative enables runtime analysis of 
communication activity by appending a small amount of 
performance data to sampled messages. Then, messages can be 
sampled and analyzed with a variety of techniques that are easily 
interchanged at the Message Passing Interface (MPI) profiling 
layer. Also, this alternative enables an assortment of runtime 
analysis techniques not previously available with post-mortem 
techniques. In this new structure, the system can jettison raw 
performance data as soon as the runtime analysis is complete. 
Evidence from an operational prototype, built on the MPI, shows 
that this new technique can provide an accurate, low-overhead, 
tractable alternative for performance analysis.  

1.1 Motivating Example 
To motivate the demands of performance analysis with large-

scale applications, we consider a case study of SMG2000, an MPI 
application with demonstrated scalability to four thousand 
processors. (Section 4 provides complete details of the 
experimental evaluation.) The goal of this example is to outline 
the process of traditional performance analysis, highlight its 
limitations, and argue for statistical profiling of communication 
activity via message sampling. 

Trace-based performance analysis of distributed applications 
is very useful because it provides users with detailed chronology 
of their application’s execution [6, 8, 13, 14, 17, 18, 20, 21, 24, 
26]. As illustrated in Figure 1, the typical operation of a trace-
based tool for analyzing communication operations on a 
distributed application is a multi-step process. To make this 
process more concrete, we applied a widely used MPI tracing tool 
to SMG2000 on 48 tasks. This application sets up and solves a 
linear system, a task common to scientific computing. Our tracing 
tool interposes instrumentation between the application and the 
MPI runtime using the MPI profiling layer that captures pertinent 
performance data as in Figure 1. As the instrumented application 
executes on a distributed platform, this profiling layer intercepts 
significant MPI subroutines, captures a timestamp and relevant 
subroutine parameters, records the event to a memory buffer, and, 
eventually, writes them to a local disk file (steps  and ). 
Unsurprisingly, most of this instrumentation has been optimized 
to use efficient buffering techniques, low overhead timers, and 
minimal data collection. At application termination, the tracing 
tool automatically merges the distributed files into one file (step 

), during which it sorts the events by global time, reconciles 
point-to-point message operations, matches collective operations, 
and calculates communication statistics.  

 



 

 

Clearly, certain types of performance analysis cannot occur 
until this final step because some metrics, such as message 
latency, are not available until reconciliation of event records for 
point-to-point messages. Lastly, with the merged file in hand, a 
user can proceed with the investigation using a variety of 
techniques (step ) including statistical analysis, pattern 
recognition, automated classifiers, and visualization to glean 
important insights into their application performance. Practically 
all of the popular tools in this area rely on visualization to assist 
users [4, 13, 23]. 

 

1.2 Observations 
The first and most significant observation is that SMG2000 

has an astonishing number of communication operations: it sends 
approximately 16,000 messages per task per solve for our 
example input problem. This volume of message traffic creates 
very large local and global tracefiles. For example, the final, 
merged, binary tracefile for SMG2000 on 48 tasks is 225MB. 
SMG2000 has scaled to over 4,000 tasks. We cannot reasonably 
expect to capture communication activity at ever-increasing scale 
using traditional tracing techniques because the amount of data 
generated can be intractable to store and analyze. 

More problematic is that the execution time of SMG2000’s 
solution phase increases from 26 seconds to 66 seconds – a 154% 
increase. This increase is due to the cumulative effect of the 
software instrumentation and the fact that tracing event buffers 
must be flushed to disk frequently.  

Even when a user exercises considerable care in focusing the 
instrumentation on particular subroutines or on limited phases of 
execution, this situation can perturb the underlying application to 
an extent that it does not resemble the actual execution of the 
optimized application, especially when tracing a sequence of 
messaging operations. For instance, Figure 2 illustrates a sequence 
of communication operations that can be influenced by 
instrumentation perturbation. One cause of performance problems 
in MPI applications is the handling of unexpected incoming 
messages. Typically, users try to optimize their applications by 

posting receives before their matching sends (as for messages  
and  in Figure 2). Tracing tools would certainly provide insight 
into this phenomenon; however, the intervening instrumentation 
may very well delay a properly posted message receive into an 
unexpected incoming message. In this example, the cumulative 
instrumentation of a and b could very well impede the MPI_Recv 
and make message  appear as an unexpected message, when in 
reality, without the instrumentation, it is not. Statistical profiling 
of messages helps to alleviate this issue in two ways. First, it 
reduces the instrumentation overhead because fewer messages are 
measured. Second, statistical profiling randomly distributes the 
instrumentation overhead across the entire message population, 
helping to avoid pathological situations like the one proposed in 
Figure 2. 

2 ENABLING RUNTIME ANALYSIS OF 
COMMUNICATION ACTIVITY 

As identified in Section 1.2, one major limitation of current 
techniques is that much of the analysis must be postponed until 
the distributed tracefiles can be merged and reconciled. In contrast 
to these trace-based techniques, we propose a new alternative that 
enables runtime analysis of communication activity by appending 
a minuscule amount of performance information to individual 
messages exchanged by the application. Our prototype, named 
PHOTON, implements these frugal modifications to enable runtime 
analysis and statistical sampling of messages, both of which are 
important elements in eliminating the burdens incumbent on trace-
based techniques: overhead, perturbation, and data management. 

 PHOTON, our operational prototype for statistical sampling of 
application communication activity, focuses on the Message 
Passing Interface (MPI) [10, 22]. Historically, users have written 
scientific applications for large, distributed memory computers 
using explicit communication as the programming model. This 
trend crystallized with the creation of the MPI specification [10, 
22], which simplified numerous issues for both application 

developers and system designers. As a result, application 
developers stabilized on the MPI programming model, and this 
has facilitated the ongoing development of a considerable number 
of applications based on MPI [25]. MPI provides a wide variety of 
communication operations including point-to-point operations, 
both blocking and non-blocking, and collective operations such as 
broadcast and global reductions. We concentrate on basic point-
to-point operations—blocking send, blocking receive, non-
blocking send, and non-blocking receive—because they are 
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Figure 1: Traditional Performance Analysis of 
Communication Activity. 
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MPI_Recv(from=0)
/* instrumentation d */

/* computation */

MPI_Send(to=1)
/* instrumentation f */

Task 0

MPI_Send(to=1)
/* instrumentation a */
…

MPI_*
/* instrumentation b */
…

MPI_Recv(from=1)
/* instrumentation c */

 
Figure 2: Perturbation example. 



 

 

widely used and are the most important yet difficult components 
to sample. 

2.1 Components 
PHOTON’s design has two basic components: a MPI profiling 

library and a modified MPI runtime library. An application must 
use both components to benefit from runtime analysis and 
message sampling. This design minimizes modifications to the 
underlying MPI runtime while retaining considerable flexibility at 
the MPI profiling layer for implementing sampling and analysis 
techniques. Most MPI performance analysis techniques, including 
traditional tracing tools, use the MPI profiling layer alone to 
gather performance information. 

As Figure 3 illustrates, the first component of PHOTON is the 
modified MPI runtime library. Our implementation is a fully 
functional version of MPICH 1.2.2, configured to use IBM’s 
Message Passing Library (MPL). Our modifications are minimal. 
We change the definition of headers for point-to-point messages 
and the definition of the MPI_Status record to include two new 
fields: a timestamp and a source code location identifier. We also 
modify the send and receive operations for all message 
protocols. 

The modified send operations copy these two 
variables into the header of the outgoing message. For 
receive operations, if the incoming message is tagged, 
then the receive operation copies the timestamp and 
source code location into these two MPI_Status fields. 
This new definition of MPI_Status includes our two new 
fields, since each incoming message must set a status 
word.1 The profiling layer can then easily check these 
two new fields in the MPI_Status structure to determine 
if, indeed, the send operation tagged the current 
message. Otherwise, it simply ignores them. If tagged, 
then the profiling layer can extract these two additional 
fields from the MPI_Status structure and use them for 
analysis. 

Strictly speaking, our limited changes to the MPI 
runtime system include: (1) increased message header 
size by 12 bytes (where the original header size was 
approximately 48 bytes); (2) two writes to these fields 
in the send operation; (3) two reads of these fields in 
the receive operation; (4) one control branch each in the send and 
the receive operation; and (5) increased size of the MPI_Status 
structure. As our experimental results show in the next section, 
this overhead is imperceptible in the performance of our MPI 
implementation. Notice that these changes do not include 
procedure calls, data analysis, or sampling mechanisms; the 
performance analysis tool inserted at the MPI profiling layer 
provides all of these components, if desired. 

The second component of our implementation exploits this 
additional information by using the MPI profiling layer to allow 
flexible analysis on unmodified application codes. Relinking via 
the profiling layer interposes the PHOTON profiling layer between 
the application and the PHOTON MPI runtime system, where it can 
intercept all MPI calls, exploit this new runtime performance 
information, and analyze data as necessary. 

                                                      
1 The MPI specification allows users to set MPI_STATUS_IGNORE to 
bypass the setup of the MPI_Status structure. PHOTON creates a temporary 
MPI_Status structure and passes this structure to the underlying system. 

2.2 Operation 
Given these two components, PHOTON works as illustrated in 

Figure 3. A message is sent from Task 0 to Task 1 using MPI’s 
blocking communication routines. At step , the application 
prepares the message and calls the MPI_Send routine. The MPI_Send 
routine is intercepted by the MPI profiling layer. At point , 
PHOTON decides whether to sample this particular message. 
Assume that it decides to sample the current message. PHOTON 
then records the start timestamp of the send operation and an 
identifier describing this operation’s location in the source code. 
Usually, this location is the return address of this MPI subroutine; 
however, it can be a more elaborate hash function that encodes a 
stack traceback, message parameters, etc. PHOTON passes these 
two additional pieces of information on to the MPI runtime and 
calls the name-shifted profiling layer routine, PMPI_Send. As the 
MPI runtime begins at step , it loads this additional information 
into the message header that it prepares. It then dispatches this 
message to the underlying message libraries. As the tagged 
message flows across the network at step , it carries these two 

additional pieces of information with it in its message header. 
This operation is similar for all MPI protocols. 

Meanwhile, Task 1 has issued a blocking MPI_Recv for this 
message, not knowing if the incoming message is a tagged 
message or not. As the user application calls MPI_Recv at step , it 
must post the blocking PMPI_Recv at step  without knowledge of 
the sampling decision.2 Only when the message is received can 
Task 1 actually make a decision about how to handle this 
message. It is important to note that this problem is impossible to 
solve for all MPI protocols within the MPI profiling layer alone, 
and it necessitated our modifications to the MPI runtime. 

Now, Task 1 receives the message at step  and it 
recognizes that this message has been tagged, so the MPI runtime 
copies this information directly into the two additional fields in 
our modified MPI_Status structure. When the MPI runtime 
completes the receive of this tagged message, it returns from the 
PMPI_Recv into the PHOTON profiling layer. At this point, PHOTON 
can make any number of decisions about how to analyze the 
tagged message. At step , PHOTON can record statistics and 
                                                      
2 Arguably, MPI_PROBE/IPROBE could provide this foresight for blocking 
receives; however, this strategy fails for non-blocking operations. 
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discard the data, write it to a trace file, or simply ignore it. When 
PHOTON has completed its analysis at step , it returns to the user 
application via the MPI_Recv call at step . The user application 
can then process the message as it normally would without regard 
to the fact that the message was sampled by the underlying 
performance analysis system. 

2.3 Key Design Implications 
This design alternative has a number of important 

implications. First, message processing is undisturbed. Our 
technique does not require additional messages, additional 
copying of message buffers, or excessive quantities of extra buffer 
space. Therefore, the MPI behaviors of this alternative should 
closely resemble the behaviors of the original MPI application. 
Although we considered several options to modifying the 
underlying MPI implementation, none of these strategies provided 
necessary functionality for all MPI operations and respected all of 
the requirements demanded by the MPI specification, such as its 
message-ordering requirement.  

More specifically, three alternatives come to mind.  In the 
first alternative, one could simply send an extra message 
following each sampled message. This alternative has two 
drawbacks: it introduces additional messages into the system, and 
the receiving task has no a priori knowledge of when to receive 
an extra message. This strategy could also introduce race 
conditions into the application. In the second alternative, the 
system could exchange performance data during collective 
operations; however, the overhead could be noticeable and 
reconciling sends with receives would still demand 
comprehensive knowledge of all point-to-point operations. The 
final alternative is that a technique could use MPI derived types to 
piggyback additional data onto messages. On the face of it, this 
alternative is appealing. The MPI specification allows nested data 
types, so the profiling layer could simply repackage a message 
with additional performance data, and send it to the receiver 
where it is unpackaged with this performance data. Unfortunately, 
this alternative has several problems. First, MPI-derived types can 
perform poorly because of additional memory copying and 
buffering of data, which might drastically alter the performance 
characteristics of the application [11]. Second, the receiving task 
cannot determine which messages are tagged messages. MPI 
message envelopes specify message source, tag, and 
communicator, but not data type. This limited information 
prohibits the receiver from determining whether an incoming 
message is tagged by using the envelope information. Therefore, 
the receive operation has no idea of how to prepare the receive 
buffer. This strategy is also plagued by the possibility of several 
types of race conditions, if message tags are used to discriminate 
sampled messages. 

The second important implication is that decisions regarding 
sampling and analysis techniques remain at the MPI profiling 
layer. Thus, these techniques can be easily interchanged without 
altering the MPI runtime. Better still, by relegating all of these 
decisions to the profiling layer, the performance of the modified 
MPI runtime can remain practically unchanged from the original. 

The third and final implication is that this design is 
applicable to all types of point-to-point communication regardless 
of MPI subroutine or message protocol. Take, for example, non-
blocking communication. PHOTON simply loads the message 
header during the initiation of the non-blocking MPI_Isend. The 
underlying message library transfers the message normally. As the 
message is received with an MPI_Irecv/MPI_Wait pair, the extra 

performance information from the message header is transferred 
directly into the MPI_Status structure, which is provided to MPI_Wait 
as a parameter. This line of reasoning holds true for other 
completion operations including MPI_Test and MPI_Waitsome 
because they return an MPI_Status structures. 

3 STATISTICAL MESSAGE SAMPLING 
Although sampling is popular in many areas of performance 

analysis, such as procedure profiling [3, 9] and instruction 
analysis using hardware counters [2], it has not been applied to 
communication activity because of the limitations listed in Section 
1. With the novel design modifications proposed in Section 0, we 
can now reliably and accurately access performance information 
at runtime, so that communication performance analysis can 
capitalize on the benefits of statistical sampling. To our 
knowledge, this technique is novel and it represents a significant 
shift in current technology for performance analysis of terascale, 
distributed applications. Sampling has also been applied at low 
levels of communication activity [7], but this research focused on 
understanding wide-area networks rather than on optimizing the 
applications that use those networks. 

3.1 Sampling Strategies 
As Figure 3 illustrates in step , PHOTON can use most any 

technique to decide which messages to sample from the entire 
message population of the application. During the send initiation 
operation for each message, PHOTON decides whether to sample a 
message. Naturally, three different techniques can drive our 
approach: purely random sampling, counter-based sampling, and 
timer-based sampling.  Accordingly, the application must execute 
for a reasonably long time and it must send some minimum 
number of messages for the sampling to be accurate. These 
methods sample from the entire message population; however, 
they can also be adapted to sample subsets of the population. For 
instance, we could sample only large messages, only messages 
sent from a certain callsite, or only messages sent during a certain 
phase of the application execution. 

Random sampling: Our first sampling method is purely 
random sampling. On every send operation, PHOTON draws a 
number from a uniform distribution in (0,1] and then checks that 
number against a user-defined threshold (T) to determine if the 
current message should be sampled. This strategy is simple and it 
allows a user to easily control the number of samples by changing 
the threshold. 

Counter-based sampling: In PHOTON, for counter-based 
sampling, a single counter in each task is incremented for every 
send operation. When the counter exceeds a threshold, one 
message is sampled, the counter is reset, and a new target 
threshold is calculated. The user can select the period (P) and 
variance (V) of the counter. Counter-based sampling benefits 
from its simplicity and low overhead; however, estimating the 
appropriate settings for P and V can be difficult because it 
depends entirely on the frequency of application communication. 

Timer-based sampling: Similarly, for timer-based sampling a 
message is sampled after a period of time has expired since the 
last send operation. The user specifies a period of time (P) and a 
variance (V). Note that our technique does not use expensive 
interrupts to execute this sampling technique. Rather, as the 
application calls MPI's send routines, PHOTON polls the local time 
and then decides if the specified threshold has been met. Although 
the cost of sampling the timer can be expensive relative to using 
counters, timer parameters are much easier to estimate and, in any 



 

 

case, PHOTON must capture this timestamp for the outgoing 
sampled message. 

3.2 Analysis Methods 
Now, with a considerable amount of performance 

information available at runtime, PHOTON can elect to perform 
analysis at runtime and jettison raw performance data 
immediately. In the context of terascale computing, this capability 
is vital because it eliminates the need for capturing massive 
tracefiles and harvesting important performance data from those 
files. Certain performance problems may still require tracing; 
however, this runtime analysis can quickly identify a subset of 
operations for more detailed investigation. 

For performance analysis, our experience indicates that it is 
important that users are able to map performance data back to 
source code; we record and tabulate all messages by source task, 
destination task, callsite location in source and destination, and 
message size. We capture message latency as our primary 
performance metric, where we define latency as the time from the 
start of the send operation until the end of the matching receive 
operation. Although this definition is somewhat different than 
architectural definitions, this interpretation is easy for a user to 
reason about, and it maps directly to the user’s source code. Most 
trace-based tools use similar definitions. 

We introduce two lightweight techniques to analyze this data 
at runtime, and we include an expensive technique of writing the 
event to a local file as a reference measurement. 

Statistical summary (STAT): One traditional option for 
profiling is a statistical summary of the messages. For our 
statistical summary, PHOTON captures a maximum, a minimum, a 
count, and a cumulative total of the message latency. With a long 
application execution, this statistical information would supply a 
reasonably accurate picture of communication activity. It also has 
a very small analysis overhead that includes locating an entry in a 
data structure and updating several fields in that entry. This 
summary, when combined with the message size and topology 
information, can identify performance problems of specific 
message operations. 

Frequency distributions (FREQ): Another valuable technique 
for analyzing large masses of raw data is a frequency distribution. 
Using a frequency distribution, an analyst can project any number 
of raw data samples into classes, which are easy to represent, 
understand, and store. These distributions provide more 
information than the statistical summary presented above; 
however, the overhead for updating the entry and the memory 
requirements is increased slightly. As before, we categorize the 
data by sender, receiver, callsite locations for both the sender and 
receiver, and message size. Our implementation creates an array 
of bins for message latency delimited by a common log scale. 
Each bin counter is incremented when a message’s latency falls 
within that bin’s bounds. 

Write to File (WRITE): Although our main focus for 
PHOTON is runtime analysis of performance data, we can simply 
use the analysis step to write the values to a memory buffer or a 
file. In contrast to traditional tracing, however, this file would not 
represent a complete chronology of the application’s 
communication behavior, but rather a small, sampled portion of 
the overall communication.  

4 EVALUATION 
Our evaluation focuses on the hypothesis that PHOTON can 

offer a feasible alternative to trace-based analysis of message-
passing applications on terascale platforms. In this regard, we 
evaluate PHOTON along several dimensions: overhead and 
perturbation, sampling and analysis methods, and improvements 
in data management. Then, we apply PHOTON to several 
applications in a realistic situation. Table 1 provides an overview 
of our experiment configurations. 

4.1 Platform 
We ran our tests on an IBM SP system. This machine is 

composed of sixteen 222 MHz IBM Power3 eight-way SMP 
nodes, totaling 128 CPUs. Each processor has three integer units, 
two floating-point units, and two load/store units. Its 64 KB L1 
cache is 128-way associative with 32 byte cache lines, and L1 
uses a round-robin replacement scheme. The L2 cache is 8 MB in 
size, which is four-way set associative with its own private cache 
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Description 
Original MPI ORIG No No - -  
MPI Modified to 
include PHOTON 
information 

NOPR
OF Yes No - - 

MPI Runtime w/ PHOTON modifications. Lacks 
PHOTON profiling layer that includes sampling and 
analysis methods. 

Sampling enabled 
at various random 
thresholds 

P-X Yes Yes Random 
X = threshold - 

Modified MPI with sampling infrastructure installed 
where the threshold for random sampling is X. No 
analysis is performed on the sampled message. 

Sampling enabled 
at various counter 
rates 

C-X Yes Yes Counter 
X = period - 

Modified MPI with sampling infrastructure installed 
where the counter-sampling period is X. No analysis is 
performed on the sampled message. 

Sampling enabled 
at various timer 
periods 

T-X Yes Yes Timer 
X = period - 

Modified MPI with sampling infrastructure installed 
where the timer-sampling period is X. No analysis is 
performed on the sampled message. 

Sampling w/ 
various analysis 
methods A-X-B Yes Yes 

A = sampling 
method 

X = threshold 

B is WRITE, 
STAT, or 

FREQ 

Modified MPI with sampling infrastructure installed 
where the sampling method is A with threshold X and 
the stated analysis B is performed on each sampled 
message. 

Table 1: Experiment Configuration Overview. 



 

 

bus. At the time of our tests, the batch partition had 15 nodes and 
the operating system was AIX 4.3.3. Each SMP node contains 4 
GB main memory for a total of 64 GB system memory. A Colony 
switch—a proprietary IBM interconnect—connects the nodes. We 
compiled the various tests with the IBM XL compilers. Our test 
jobs ran on dedicated nodes, although other jobs were 
concurrently using the network. We built our PHOTON prototype 
with the publicly available version of MPI, namely MPICH 1.2.2, 
which we configured to use IBM’s Message Passing Layer (MPL) 
as the communication substrate. 

4.2 Overhead 
Our proposals hinge on the ability of the MPI runtime system 

to carry a small amount of additional information with each 
message. To assess the penalty for this increase in the message 
header size, we compare three versions of MPI as described by 
Table 1: (1) a version of the original MPI (ORIG); (2) a version of 
the modified MPI with the minimal internal changes, but without 
the PHOTON profiling layer installed (NOPROF); and (3) a version 
with both the modified MPI and the PHOTON profiling layer 
configured to sample no messages (P-0-OFF). For these 
experiments, we did not perform analysis on the resulting sampled 
message; we consider analysis methods in the next section. These 
experiments measure message latency and bandwidth for each 
configuration using the Pallas PMB-MPI1 PingPong benchmark 
between two SMP nodes. This benchmark measures average 
latency and bandwidth for multiple send–receive pairs, and it 
implements a “warm up” period prior to each test. 
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Figure 4: PHOTON Overhead. 

As Figure 4 illustrates, the modified version of MPI 
(NOPROF) performs identically to the original version (ORIG). 
The increase in latency was less than one microsecond for all 
message sizes. When we included the PHOTON profiling library 
with sampling disabled (P-0-OFF), the overhead increased by 
three microseconds at a payload size of 4 bytes, though it is only 
noticeable for messages that have fewer than 10,000 bytes. As 
message size increases, this fixed-cost overhead disappears into 
the greater cost of the communication operation, as expected. 
Although we do expect the overhead for PHOTON to be very small 
for most MPI implementations, the impact of these changes will 
be proportionally higher on optimized messaging layers, such as 

those that use shared memory for intra-node transfers on an SMP. 
Our experiments showed no measurable change in the 
communication bandwidth across these configurations.  
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Figure 5: PHOTON Overhead for Counter Sampling. 

This result is pivotal because it argues that these new features 
could be included in many MPI implementations without 
mandatory performance degradation. The optional profiling 
library does inflict a small overhead, but it is only noticeable only 
for small messages. This result also supports our decision to 
separate the sampling and analysis implementation from our 
changes to the internal MPI runtime for runtime analysis. 

4.3 Sampling Methods 
The various sampling methods introduced in Section 3.1 

have different performance penalties and results with respect to 
how they sample the message population of the application. All 
three options provide a convenient means to control the number of 
messages sampled, and we use that feature to evaluate each 
method’s overhead and sample space. We delay discussion of 
sample space until Section 4.5 where we evaluate it on real 
applications. As shown in Table 1, we vary the threshold (X) for 
random sampling (P-X), the period (X) for counter-based 
sampling (C-X), and the period (X) for timer-based sampling (T-
X). Variance for counter- and timer-based sampling was 10% of 
the respective period. Each sampled message is analyzed with the 
frequency distribution technique. 

First, for counter sampling, we range the period from 2 to 
256. Figure 5 illustrates the overhead’s explicit variation with the 
counter period. For a payload of 4 bytes, the latency ranges from 
48.7 microseconds for C-2 down to 40.1 microseconds for C-256. 
For reference, we include the lower bound latency of 37.2 
microseconds at 4 bytes for the NOPROF configuration. For 
applications that send messages with payloads of more than 
20,000 bytes, the cost is imperceptible relative to the overall 
messaging cost. 

Next, Figure 6 shows that the overhead for timer-based 
sampling is less controllable, but it remains low. A 4-byte 
message suffers an increase in latency from 37.2 microseconds for 
NOPROF to 45.5 microseconds for T-0.001-FREQ, where 
messages are sampled at a period of 1 millisecond. Increasing the 



 

 

sampling period to 300 milliseconds lowers the latency to 41.8 
microseconds. 
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Figure 6: PHOTON Overhead for Timer Sampling. 

Last, for random sampling, we range the threshold from 0.01 
(1%) up to 0.9 (90%). Figure 7 illustrates the variation in response 
to this range. At 1% for a 4-byte message, the latency increases to 
43.3 microseconds from 37.2 microseconds for NOPROF. As the 
threshold increases up to 90%, the latency also increases to 57.0 
microseconds.  
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Figure 7: PHOTON Overhead for Random Sampling. 

This evidence reveals that all three sampling strategies have 
a demonstrated controllability of overhead with respect to 
message latency, and it shows that each strategy can have limited 
impact on the target. 

4.4  Analysis Methods 
Runtime analysis methods are valuable because after 

analysis, the raw data can be purged immediately, eliminating 
many of the problems with traditional techniques. However, the 

analysis methods must balance conflicting goals of minimizing 
computation and storage against the goal of providing enough 
detailed information for a user to make a proper diagnosis. For 
this reason, we evaluate two lightweight statistical analysis 
techniques and a traditional technique of writing the data to a 
local file. Viewed in this light, it is important to remember that the 
cost of the analysis technique can be balanced against the 
sampling rates evaluated earlier. If a particular analysis method 
has relatively high cost, then the sampling rate can be lowered to 
compensate, minimizing the overall impact on the application 
execution. 

As Figure 8 illustrates, the overhead of analysis methods 
varies considerably; however, our ability to change the sampling 
rates provides considerable flexibility in regulating this analysis 
cost. In Figure 8, we see that the most expensive technique is 
writing a record to a file (P-0.5-WRITE) at 59.9 microseconds, 
and as we would expect, that the lowest overhead occurs when 
analysis is disabled (P-0.1-OFF). This cost drops as we decrease 
the random sampling threshold to 10% (P-0.1) from 50% (P-0.5) 
for each analysis technique. Although both the statistical summary 
method and the frequency distribution method yield similar levels 
of overhead, they perform much better that the write technique. 
For applications that execute for long periods of time and send a 
large volume of messages, a user could lower the sampling rate to 
a very small threshold (e.g., 0.1%).  
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Figure 8: PHOTON Overhead for Analysis Methods. 

4.5 Applications 
To verify that our new technique works with real 

applications, we tested three applications: sPPM [19], Sweep3D 
[16], and SMG2000 [5]. All of these benchmarks have scaled to 
thousands of tasks, use MPI, are publicly available, and use point-
to-point primitives for the majority of their communication. In 
these examples, we scaled problem sizes with the number of tasks, 
keeping the amount of work per task constant. 

sPPM: sPPM [19] solves a 3-D gas dynamics problem on a 
uniform Cartesian mesh, using a simplified version of the 
Piecewise Parabolic Method. The algorithm makes use of a split 
scheme of X, Y, and Z Lagrangian and remap steps, which are 
computed as three separate sweeps through the mesh per timestep. 



 

 

Message passing provides updates to ghost cells from neighboring 
domains three times per timestep.  

Sweep3D: Sweep3D [15, 16] is a solver for the 3-D, time-
independent, particle transport equation on an orthogonal mesh, 
and it uses a multidimensional wavefront algorithm for “discrete 
ordinates” deterministic particle transport simulation. Sweep3D 
benefits from multiple wavefronts in multiple dimensions, which 
are partitioned and pipelined on a distributed memory system. The 
three-dimensional space is decomposed onto a two-dimensional 
orthogonal mesh, where each processor is assigned one columnar 
domain. Sweep3D exchanges messages between processors as 
wavefronts propagate diagonally across this 3-D space in eight 
directions. 

SMG2000: SMG2000 [5] is a parallel semicoarsening 
multigrid solver for the linear systems arising from finite 
difference, finite volume, or finite element discretizations of the 
diffusion equation fuuD =+∇⋅∇ σ)( on logically rectangular 
grids. The code solves both 2-D and 3-D problems with 
discretization stencils of up to 9-points in 2-D and up to 27-points 
in 3-D. Because SMG2000 is an implicit solver, its message 
characteristics are much different than both sPPM and Sweep3D. 
SMG2000 sends considerably more messages and the messages 
are orders of magnitude smaller, usually less than 2,000 bytes. 
The message distribution is also much different. sPPM and 
Sweep3D have regimented 3-D and 2-D nearest neighbor 
communication patterns, respectively. On average, every 
SMG2000 task communicates with one half of all other tasks. 
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Figure 9: Number of Messages Sampled on Task 0. 

Figure 9 shows the number of messages actually sampled by 
PHOTON on our three applications, where a threshold of 1.0 shows 
the total number of messages sent from Task 0. Here, we can also 
see the differences in the number of messages sent by every 
application. SMG2000 sends about 105,000 messages whereas 
sPPM sends only 260. Encouragingly, Figure 9 illustrates that 
PHOTON can easily change the number of messages sampled 
during an application experiment.  

Sweep3D and sPPM send relatively few messages; our 
experiments confirmed that all sampling rates less than 50% did 
not have a measurable effect on the application runtime. When the 
sampling threshold increased above 50%, the execution time of 

both applications increased consistently but never more than 1%.  
SMG2000, on the other hand, sends significantly more messages; 
Figure 10 shows the impact of the PHOTON sampling threshold on 
the SMG2000 runtime, normalized to the NOPROF configuration. 
We see that initially, at a 1% sampling threshold, SMG2000 
experiences a slowdown of 6.1%.  As the sampling threshold 
increases to 90%, the slowdown climbs to 11%.  
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Figure 10: Impact of sampling rate on SMG2000 runtime. 

Although SMG2000 does incur perturbation on the 
application runtime, its impact is much less than the traditional 
tracing approach that had a 154% slowdown in execution time. 
Much more importantly, because PHOTON gathers its information 
with sampling, it helps to avoid pathological measurement 
problems like those mentioned in Section 1.2. Still, we believe 
that more aggressive optimization of the PHOTON profiling layer, 
which includes the sampling and analysis logic, would reduce this 
overhead. For instance, the current implementation calls the 
system-wide global clock to timestamp outgoing messages, and 
consequently, we sample it at the beginning of every send 
operation. An implementation with lower overhead might use a 
hybrid timer scheme where the expensive system-wide global 
clock is accessed periodically and the local, economical clock is 
used between these global clock updates. Also, our current 
strategy uses the standard UNIX libraries for its floating-point 
random number generators; we could possibly reduce their 
expense by using different operations, and by changing the 
implementation of these generators. 

Another characteristic of different sampling methods and 
thresholds is the resulting sample space. Figure 11 shows the 
relative number of distinct messages sampled as a portion of the 
entire sample spaces for SMG2000 and sPPM. Here, we define a 
distinct message as at least one sample of a message identifier, 
where a message identifier is a unique identifier hashed from the 
tuple of source rank, destination rank, source code location, 
destination code location, message size. Clearly, as the sampling 
threshold increases, so does coverage of the population. However, 
PHOTON’s sampling rate is controlled for each task, not the 
application as a whole. When samples are aggregated across all 
tasks, with a 25% threshold, we get over 80% coverage for each 



 

 

of these experiments. We expect this coverage to increase for 
long-running executions of any application. Admittedly, our 
strategy suffers from issues with sampling: messages that are sent 
infrequently, or only once, might never be sampled. 
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Figure 11: Sample Space of Message Population. 

Figure 12 shows a subset of the performance data from our 
experiments on SMG2000. Latency distribution is a frequency 
distribution of the message latency where bin bounds are 
delimited by a common log scale. In this figure, we have 
displayed 36 of over 11,000 message identifiers. The distributions 
at A and B show message latency falling primarily into one bin, 
while the message latency for C has a wider distribution. A user 
could easily harvest this distribution information, combine it with 
knowledge of the topology, and highlight poor communication 
activity (including the locations of the respective source code) as 
well as the consistency of specific measurements. 

4.6 Observations 
Our experimental evaluation substantiated many of our ideas 

and it also revealed several issues. Among the most important 
observations exposed by our experiments were that by using a 
variety of sampling and analysis techniques, we could control the 
performance overhead on message latency, bandwidth, and 
application runtime. Furthermore, the design of our PHOTON 
prototype underscores that a clean separation of functionality 
between the MPI runtime and the MPI profiling layer can preserve 
performance and flexibility. 

Reduced overhead. Our evaluation revealed that we could 
dramatically control the overhead of PHOTON while maintaining 
important information like message latency with statistical 
profiling. Our experiments on real applications and on 
benchmarks demonstrated that this approach radically diminishes 
the impact of instrumentation on the application. For SMG2000, 
we reduced the impact on solver runtime from a 154% slowdown 
for tracing to 6% for message sampling. Consequently, these 
variable sampling rates can be balanced against the cost of the 
analysis technique.  

Improved accuracy. As a result of the reduced overhead, this 
approach improves the accuracy of the performance analysis. By 
reducing instrumentation impact and by randomly sampling 

individual messages, PHOTON provides a more accurate analysis 
of communication activity and it can paint a vastly different 
picture than traditional tracing communication. Preliminary 
comparisons of tracefile data to message sampling data show that 
different analysis conclusions are possible, and our future work 
includes quantifying these differences. 
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Reduced data volume. Statistical message sampling, when 
combined with runtime data analysis, eases the data management 
burden imposed by traditional techniques; our experiments on 
several applications demonstrate that significant, useful 
performance information can be processed dynamically. Because 
we can calculate message latency at runtime, the analysis can 
proceed immediately, discarding any raw performance data as 
necessary. Our lightweight analysis examples—statistical 
summary and frequency distribution—show that PHOTON can 
collect important information from long-running, terascale 
applications. 

Frugal modifications to MPI runtime have negligible 
performance implications. The design of our PHOTON prototype 
emphasizes that a clean separation of functionality between the 
MPI runtime and the MPI profiling layer can preserve 
performance and flexibility. Changes to the MPI runtime system 
were frugal and our evidence indicates that these changes have an 
almost imperceptible performance penalty. Control of the 
sampling and analysis techniques remains in the profiling layer, so 
that users can simply interpose various techniques into their 
applications to do performance analysis. Indeed, we believe this 
result argues for PHOTON features in production MPI 
implementations on terascale systems because it will be necessary 
for any performance analysis of communication activity. What is 
more, with its low overhead and amortized perturbation, this 
technique is also appealing to consider using it continuously for 
large-scale, long-running applications. 

Sampling methods. We found that our timer-based sampling 
method can lead to pathological situations where only certain 
messages are sampled. For example, it is common in scientific 



 

 

simulations to exchange data with neighbors during one phase of a 
timestep and compute during the other phase. We found that many 
of our experiments with timer-based sampling sampled only the 
first communication operation immediately after the compute 
phase, and then missed several of the consecutive send operations 
that immediately followed it. The other two sampling strategies 
did not suffer from this deficiency because they operate 
independent of time. More importantly, our random sampling 
strategy allows a user to specify a uncomplicated percentage of 
messages to sample. 

5 CONCLUSIONS 
As parallel computing systems continue to scale to massive 

numbers of processors, performance analysis techniques must 
allow users to understand their application’s behaviors. We have 
proposed and evaluated a novel alternative to trace-based, post-
mortem performance analysis of communication activity for these 
applications: statistical profiling of communication activity using 
runtime message sampling. Our operational prototype, PHOTON, 
demonstrated several significant advantages over the traditional 
trace-based approaches including dramatically lower overhead 
and perturbation, even for applications that communicate 
frequently, such as SMG2000. Our implementation strategy 
required minor modifications to the MPI runtime to enable 
runtime analysis of performance data, and it allowed flexible 
development of different sampling and analysis techniques at the 
MPI profiling layer. 
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